Files
2020-05-04 10:49:59 +02:00

179 lines
5.8 KiB
Python

import matplotlib.pyplot as plt
import pandas as pd
import os
def setAxLinesBW(ax):
"""
Take each Line2D in the axes, ax, and convert the line style to be
suitable for black and white viewing.
"""
MARKERSIZE = 3
COLORMAP = {
'#1f77b4': {'marker': None, 'dash': [5,2]},
'#ff7f0e': {'marker': None, 'dash': [3,4]},
'#2ca02c': {'marker': None, 'dash': [1,1]},
'k': {'marker': None, 'dash': (None,None)},
"#d62728": {'marker': None, 'dash': (None,None)},
}
lines_to_adjust = ax.get_lines()
try:
lines_to_adjust += ax.get_legend().get_lines()
except AttributeError:
pass
for line in lines_to_adjust:
origColor = line.get_color()
line.set_color('black')
line.set_dashes(COLORMAP[origColor]['dash'])
line.set_marker(COLORMAP[origColor]['marker'])
line.set_markersize(MARKERSIZE)
def setFigLinesBW(fig):
"""
Take each axes in the figure, and for each line in the axes, make the
line viewable in black and white.
"""
for ax in fig.get_axes():
setAxLinesBW(ax)
def save_figs(folder):
happiness_diff = load_data_frame("{}/data/{}".format(folder, "_happy_increase.csv"))
unhappiness_diff = load_data_frame("{}/data/{}".format(folder, "_unhappy_increase.csv"))
happiness_diff['dictator'] = 0
unhappiness_diff['dictator'] = 0
happiness_total_all = load_data_frame("{}/data/{}".format(folder, "_happy_total_all.csv"))
unhappiness_total_all = load_data_frame("{}/data/{}".format(folder, "_unhappy_total_all.csv"))
column = happiness_total_all.columns[0]
index = happiness_total_all.index[0]
dictator_y_happy = happiness_total_all[column][index] - happiness_diff[column][index]
dictator_y_unhappy = unhappiness_total_all[column][index] - unhappiness_diff[column][index]
figure, axes = new_fig(title="{} Figure 2".format(folder))
x_lim=[0,150]
axes[0].set_title("satisfaction")
axes[0].set_xlim(x_lim)
axes[0].set_xlabel("number of stored configurations")
axes[0].set_ylabel("number of people")
axes[0].axhline(y=dictator_y_happy,linewidth=1, color='k')
happiness_total_all.plot(ax=axes[0])
y_labels_happy_total =axes[0].get_yticks().tolist()
axes[1].set_title("dissatisfaction")
axes[1].set_xlabel("number of stored configurations")
axes[1].set_ylabel("number of people")
axes[1].set_xlim(x_lim)
axes[1].axhline(y=dictator_y_unhappy,linewidth=1, color='k')
unhappiness_total_all.plot(ax=axes[1])
y_labels_unhappy_total =axes[1].get_yticks().tolist()
setFigLinesBW(figure)
#plt.savefig("{}/fig/vis_happy_unhappy_number.pdf".format(folder),format="pdf")
plt.close()
figure, axes = new_fig(title="{} Figure 1".format(folder))
x_lim=[0,150]
left_y_label = "change in number of people"
rigt_y_label = "number of people"
x_label = "number of stored configurations"
axes[0].set_title("satisfaction")
axes[0].set_xlim(x_lim)
axes[0].set_xlabel(x_label)
axes[0].set_ylabel(left_y_label)
#axes[0].axhline(y=0, linewidth=1, color='k')
twin0 = axes[0].twinx()
twin0.set_ylabel(rigt_y_label)
happiness_diff.plot(ax=axes[0])
axes[1].set_title("dissatisfaction")
axes[1].set_xlabel(x_label)
axes[1].set_ylabel(left_y_label)
axes[1].set_xlim(x_lim)
#axes[1].axhline(y=0, linewidth=1, color='k')
twin1 = axes[1].twinx()
twin1.set_ylabel(rigt_y_label)
unhappiness_diff.plot(ax=axes[1])
y_labels_happy = list(map(lambda x: process_label(x, show_plus=True), axes[0].get_yticks().tolist()))
y_labels_unhappy = list(map(lambda x: process_label(x, show_plus=True), axes[1].get_yticks().tolist()))
y_labels_secondary_happy = list(map(lambda x: process_label(x + dictator_y_happy), axes[0].get_yticks().tolist()))
y_labels_secondary_unhappy = list(map(lambda x: process_label(x + dictator_y_unhappy), axes[1].get_yticks().tolist()))
align_labels(axes[0], twin0)
align_labels(axes[1], twin1)
axes[0].set_yticklabels(y_labels_happy)
twin0.set_yticklabels(y_labels_secondary_happy)
axes[1].set_yticklabels(y_labels_unhappy)
twin1.set_yticklabels(y_labels_secondary_unhappy)
setFigLinesBW(figure)
#plt.show()
plt.savefig("{}/fig/vis_happy_unhappy_combined.pdf".format(folder),format="pdf")
plt.close()
def process_label(label, show_plus=False, round_digits = 2):
n_label = round(label, round_digits)
if label > 0 and show_plus:
n_label = "+{}".format(n_label)
else:
n_label = "{}".format(n_label)
return n_label
def align_labels(origin, to_align):
y_low, y_high = origin.get_ylim()
to_align.set_ylim(y_low, y_high)
to_align.set_yticklabels(origin.get_yticks().tolist())
def load_data_frame(path):
frame = pd.read_csv(path, index_col=0).T
frame.index = frame.index.astype(int)
return frame
def new_fig(subplot_row=1, subplot_column=2,aspect_ratio=1.3 ,dpi=300, title="Untitled"):
figure, axes = plt.subplots(subplot_row, subplot_column, sharey=False)
figure.canvas.set_window_title(title)
figure.dpi = dpi
figure.set_figwidth(4 * subplot_column * aspect_ratio)
figure.set_figheight(4 * subplot_row)
plt.subplots_adjust(wspace=0.45)
return figure, axes
def main(dir = "./out"):
for subdir in os.listdir(dir):
path = "{}/{}".format(dir,subdir)
if os.path.isdir(path):
try:
save_figs(path)
print("Generated Figures for: {}".format(subdir))
except OSError as e:
print("Files Not Found in: {}".format(subdir))
if __name__ == "__main__":
main()