mirror of
https://github.com/13hannes11/bachelor_thesis.git
synced 2024-09-04 01:11:00 +02:00
add section about recommender system comparison
This commit is contained in:
@@ -2,6 +2,7 @@
|
||||
\usepackage{tabularx}
|
||||
\usepackage{placeins}
|
||||
\usepackage{hyperref}
|
||||
\usepackage{multirow}
|
||||
|
||||
% MATHS PACKAGES
|
||||
\usepackage{amsmath}
|
||||
@@ -24,6 +25,78 @@ Commonly for collaborative filtering with group recommenders the preferences of
|
||||
|
||||
Collaborative filtering in configuration on the other hand usually uses the similarity of the current unfinished configuration to historic configurations to give recommendations.
|
||||
|
||||
\section{Recommender Systems}
|
||||
|
||||
\subsection{Advantages over Collaborative Filtering}
|
||||
\begin{itemize}
|
||||
\item No cold start problem for items
|
||||
\item No grey sheep problem as not dependent on similar groups having existed before.
|
||||
\item Domain knowledge is existent
|
||||
\item No issues with data sparsity as item description is given by product structure
|
||||
\item No reliance on preferences that would result in a comparison space that is too large
|
||||
\item No dependence of historic group preference accuracy
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Advantages over Constrained-Based Recommendation}
|
||||
\begin{itemize}
|
||||
\item Configuration state does not cause absence of recommendations
|
||||
\item Expendable to also support constraints
|
||||
\item No need to handle inconsistencies explicitly
|
||||
\end{itemize}
|
||||
|
||||
\begin{table}
|
||||
\begin{center}
|
||||
\begin{tabularx}{\columnwidth}{X|X|X}
|
||||
\hline
|
||||
Collaborative Filtering
|
||||
& \begin{itemize}
|
||||
\item Serendipity of results
|
||||
\item Automatic learning of market segments
|
||||
\item Grey sheep problem
|
||||
\item No domain knowledge required
|
||||
\end{itemize}
|
||||
& \begin{itemize}
|
||||
\item Cold start problem for users and items
|
||||
\item Grey sheep problem
|
||||
\item Quality based on rating quality
|
||||
\item Data sparsity
|
||||
\item Privacy not guaranteed
|
||||
\end{itemize} \\
|
||||
\hline
|
||||
Content-Based Filtering
|
||||
& \begin{itemize}
|
||||
\item No community required
|
||||
\item User independent
|
||||
\item Transparent
|
||||
\item No item cold start
|
||||
\item Simplicity
|
||||
\item Robust
|
||||
\item Stable to constant influx of new users
|
||||
\item Possible to have profitability metric
|
||||
\end{itemize}
|
||||
& \begin{itemize}
|
||||
\item Overspecialisation
|
||||
\item No serendipity
|
||||
\item User cold start problem
|
||||
\item Requires domain knowledge
|
||||
\end{itemize} \\
|
||||
\hline
|
||||
Constraint-Based Recommendation
|
||||
& \begin{itemize}
|
||||
\item Transparent
|
||||
\item Good for non discrete values
|
||||
\end{itemize}
|
||||
& \begin{itemize}
|
||||
\item Inconsistent constraints
|
||||
\item No results
|
||||
\end{itemize} \\
|
||||
\end{tabularx}
|
||||
\caption{A description of the advantages and disadvantages of common recommendation techniques}
|
||||
\end{center}
|
||||
\end{table}
|
||||
|
||||
\FloatBarrier
|
||||
|
||||
\section{Problem}
|
||||
A group of people with different personal preferences wants to buy products with high variability. Making decisions in the group comes with problems as communicating preferences is complicated.
|
||||
|
||||
@@ -64,7 +137,6 @@ The system has one main way to be used as defined in \autoref{table:simulation_p
|
||||
\hline
|
||||
\end{tabularx}
|
||||
\caption{A description of the main way users will interact with the system}
|
||||
\label{table:simulation_parameters}
|
||||
\end{center}
|
||||
\end{table}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user