Files
UU_NCML_Project/preprocess_de.py

38 lines
1.2 KiB
Python

import pandas as pd
import os
# Preprocess data
vote_counter = -1
data = pd.DataFrame()
name_column = 'Bezeichnung'
column_to_filename = {}
voting_features = ['ja', 'nein', 'Enthaltung', 'ungültig']
for dirname, _, filenames in os.walk('./de/csv'):
for filename in filenames:
vote_counter += 1
print(os.path.join(dirname, filename))
df = pd.read_csv(os.path.join(dirname, filename))
# Give each voting behaviour type an identifier from 0 to len(voting_features) - 1
for i, feature in enumerate(voting_features):
df[feature] *= i
vote_column_name = f'vote_{vote_counter}'
# Map column name of vote to filename -> allows retrieving what the vote was about
column_to_filename[vote_column_name] = filename
# add feature for the vote
df[vote_column_name] = df[voting_features].sum(axis=1)
if data.empty:
# if first file that is loaded set data equal to data from first file
data = df[[name_column, vote_column_name]]
else:
# merge data with already loaded data
data = data.merge(df[[name_column, vote_column_name]], on=name_column)
print(column_to_filename)
print(data)