mirror of
https://github.com/13hannes11/UU_NCML_Project.git
synced 2024-09-03 20:50:59 +02:00
Removed titles from plots
This commit is contained in:
@@ -40,7 +40,6 @@ def predict(model, data, grid_h, grid_w, party_colors, comparison_data=pd.DataFr
|
|||||||
|
|
||||||
# Plot hit map
|
# Plot hit map
|
||||||
plot_hits(prediction, grid_w, grid_h)
|
plot_hits(prediction, grid_w, grid_h)
|
||||||
plt.title("Hitmap")
|
|
||||||
|
|
||||||
# converting to x and y coordinates
|
# converting to x and y coordinates
|
||||||
ys, xs = np.unravel_index(np.argmax(prediction, axis=1), (grid_h, grid_w))
|
ys, xs = np.unravel_index(np.argmax(prediction, axis=1), (grid_h, grid_w))
|
||||||
@@ -48,7 +47,6 @@ def predict(model, data, grid_h, grid_w, party_colors, comparison_data=pd.DataFr
|
|||||||
# plotting mps
|
# plotting mps
|
||||||
party_affiliation = data[:,1]
|
party_affiliation = data[:,1]
|
||||||
plot_mps(data[:,0], xs, ys, party_affiliation, party_colors, randomize_positions=True)
|
plot_mps(data[:,0], xs, ys, party_affiliation, party_colors, randomize_positions=True)
|
||||||
plt.title("Members of Parliament")
|
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
# calculating party positions based on mps
|
# calculating party positions based on mps
|
||||||
@@ -66,28 +64,23 @@ def predict(model, data, grid_h, grid_w, party_colors, comparison_data=pd.DataFr
|
|||||||
|
|
||||||
# plotting parties
|
# plotting parties
|
||||||
plot_parties(party_pos, party_colors, randomize_positions=False, new_plot=False)
|
plot_parties(party_pos, party_colors, randomize_positions=False, new_plot=False)
|
||||||
plt.title('Node distance plot with parties')
|
|
||||||
|
|
||||||
# plotting party distances in output space
|
# plotting party distances in output space
|
||||||
part_distance_out = calc_party_distances(party_pos)
|
part_distance_out = calc_party_distances(party_pos)
|
||||||
plot_party_distances(part_distance_out)
|
plot_party_distances(part_distance_out)
|
||||||
plt.title('Party Distances')
|
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
if not comparison_data.empty:
|
if not comparison_data.empty:
|
||||||
plot_parties(comparison_data, party_colors, randomize_positions=False, new_plot=True)
|
plot_parties(comparison_data, party_colors, randomize_positions=False, new_plot=True)
|
||||||
plt.title("Political Compass")
|
|
||||||
plt.ylabel("libertarian - authoritarian")
|
plt.ylabel("libertarian - authoritarian")
|
||||||
plt.xlabel("left < economic > right")
|
plt.xlabel("left < economic > right")
|
||||||
|
|
||||||
comparison_data_dist = calc_party_distances(comparison_data)
|
comparison_data_dist = calc_party_distances(comparison_data)
|
||||||
plot_party_distances(comparison_data_dist)
|
plot_party_distances(comparison_data_dist)
|
||||||
plt.title("Political Compass Party Distances")
|
|
||||||
|
|
||||||
err = remove_NaN_rows_columns(normalize_df(part_distance_out) - normalize_df(comparison_data_dist))
|
err = remove_NaN_rows_columns(normalize_df(part_distance_out) - normalize_df(comparison_data_dist))
|
||||||
err = err * err
|
err = err * err
|
||||||
plot_party_distances(err)
|
plot_party_distances(err)
|
||||||
plt.title(f'Normalized Distance Squared Error, with MSE={np.nanmean(err.to_numpy()):.2f}')
|
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
def iter_neighbours(weights, hexagon=False):
|
def iter_neighbours(weights, hexagon=False):
|
||||||
|
|||||||
Reference in New Issue
Block a user