diff --git a/voting_lib/voting_analysis.py b/voting_lib/voting_analysis.py index 8cbc544..e2ae709 100644 --- a/voting_lib/voting_analysis.py +++ b/voting_lib/voting_analysis.py @@ -40,7 +40,6 @@ def predict(model, data, grid_h, grid_w, party_colors, comparison_data=pd.DataFr # Plot hit map plot_hits(prediction, grid_w, grid_h) - plt.title("Hitmap") # converting to x and y coordinates ys, xs = np.unravel_index(np.argmax(prediction, axis=1), (grid_h, grid_w)) @@ -48,7 +47,6 @@ def predict(model, data, grid_h, grid_w, party_colors, comparison_data=pd.DataFr # plotting mps party_affiliation = data[:,1] plot_mps(data[:,0], xs, ys, party_affiliation, party_colors, randomize_positions=True) - plt.title("Members of Parliament") plt.show() # calculating party positions based on mps @@ -66,28 +64,23 @@ def predict(model, data, grid_h, grid_w, party_colors, comparison_data=pd.DataFr # plotting parties plot_parties(party_pos, party_colors, randomize_positions=False, new_plot=False) - plt.title('Node distance plot with parties') # plotting party distances in output space part_distance_out = calc_party_distances(party_pos) plot_party_distances(part_distance_out) - plt.title('Party Distances') plt.show() if not comparison_data.empty: plot_parties(comparison_data, party_colors, randomize_positions=False, new_plot=True) - plt.title("Political Compass") plt.ylabel("libertarian - authoritarian") plt.xlabel("left < economic > right") comparison_data_dist = calc_party_distances(comparison_data) plot_party_distances(comparison_data_dist) - plt.title("Political Compass Party Distances") err = remove_NaN_rows_columns(normalize_df(part_distance_out) - normalize_df(comparison_data_dist)) err = err * err plot_party_distances(err) - plt.title(f'Normalized Distance Squared Error, with MSE={np.nanmean(err.to_numpy()):.2f}') plt.show() def iter_neighbours(weights, hexagon=False):