mirror of
https://github.com/13hannes11/situr.git
synced 2024-09-03 20:50:58 +02:00
add typehint to situ image and update docstring
This commit is contained in:
@@ -3,15 +3,17 @@ from PIL import Image, ImageDraw
|
||||
from skimage import img_as_float
|
||||
from skimage.feature import blob_dog
|
||||
|
||||
from situr.transformation.channel_transformation import IdentityChannelTransform
|
||||
from typing import List
|
||||
|
||||
from situr.transformation.channel_transformation import ChannelTransform, IdentityChannelTransform
|
||||
|
||||
|
||||
def extend_dim(array):
|
||||
def extend_dim(array: np.ndarray):
|
||||
ones = np.ones((array.shape[0], 1))
|
||||
return np.append(array, ones, axis=1)
|
||||
|
||||
|
||||
def remove_dim(array):
|
||||
def remove_dim(array: np.ndarray):
|
||||
return array[:, :-1]
|
||||
|
||||
|
||||
@@ -21,7 +23,7 @@ class PeakFinderDifferenceOfGaussian:
|
||||
self.max_sigma = max_sigma
|
||||
self.threshold = threshold
|
||||
|
||||
def find_peaks(self, img_array):
|
||||
def find_peaks(self, img_array: np.ndarray) -> np.ndarray:
|
||||
img = img_as_float(img_array)
|
||||
peaks = blob_dog(img, min_sigma=self.min_sigma,
|
||||
max_sigma=self.max_sigma, threshold=self.threshold)
|
||||
@@ -38,13 +40,13 @@ class SituImage:
|
||||
----------
|
||||
data : numpy.array
|
||||
the image data containing all the channels of shape (channels, focus_levels, image_size_y, image_size_x)
|
||||
files: (list(list(str)))
|
||||
files : List[List[str]]
|
||||
A list of lists. Each inner list corresponds to one focus level. Its contents correspons to a file for each channel.
|
||||
nucleaus_channel : int
|
||||
tells which channel is used for showing where the cell nucleuses are.
|
||||
"""
|
||||
|
||||
def __init__(self, file_list, nucleaus_channel=4):
|
||||
def __init__(self, file_list: List[List[str]], nucleaus_channel: int = 4):
|
||||
self.files = file_list
|
||||
self.data = None
|
||||
self.nucleaus_channel = nucleaus_channel
|
||||
@@ -52,56 +54,53 @@ class SituImage:
|
||||
IdentityChannelTransform() for file in file_list
|
||||
]
|
||||
self.peak_finder = PeakFinderDifferenceOfGaussian()
|
||||
# TODO: make peak finder a constructor argument
|
||||
|
||||
def get_data(self):
|
||||
def get_data(self) -> np.ndarray:
|
||||
if self.data is None:
|
||||
self._load_image()
|
||||
# TODO: apply transformations
|
||||
return self.data
|
||||
|
||||
def apply_transformations():
|
||||
def apply_transformations(self):
|
||||
# TODO: implement
|
||||
pass
|
||||
|
||||
def set_channel_transformation(self, channel, transformation):
|
||||
def set_channel_transformation(self, channel: int, transformation: ChannelTransform):
|
||||
self.channel_transformations[channel] = transformation
|
||||
|
||||
def get_channel_count(self):
|
||||
def get_channel_count(self) -> int:
|
||||
return self.get_data().shape[0]
|
||||
|
||||
def get_focus_level_count(self):
|
||||
def get_focus_level_count(self) -> int:
|
||||
return self.get_data().shape[1]
|
||||
|
||||
def get_focus_level(self, channel, focus_level):
|
||||
def get_focus_level(self, channel: int, focus_level: int) -> np.ndarray:
|
||||
"""Loads channel and focus level of an image.
|
||||
|
||||
Args:
|
||||
channel (int): The channel to be used
|
||||
focus_level (int): The focus level to be used
|
||||
Returns:
|
||||
numpy.array: The loaded image of shape (width, height)
|
||||
|
||||
Returns:
|
||||
np.ndarray: The loaded image of shape (width, height)
|
||||
"""
|
||||
return self.get_data()[channel, focus_level, :, :]
|
||||
|
||||
def get_channel(self, channel):
|
||||
'''
|
||||
Loads and returns the specified channel for all focus_levels.
|
||||
def get_channel(self, channel: int) -> np.ndarray:
|
||||
"""Loads and returns the specified channel for all focus_levels.
|
||||
|
||||
Returns:
|
||||
numpy.array: The loaded image of shape (focus_level, width, height)
|
||||
'''
|
||||
Args:
|
||||
channel (int): The channel to be returned
|
||||
|
||||
Returns:
|
||||
np.ndarray: The loaded image of shape (focus_level, width, height)
|
||||
"""
|
||||
return self.get_data()[channel, :, :, :]
|
||||
|
||||
def _load_image(self):
|
||||
'''
|
||||
Loads the channels of an image from seperate files and returns them as numpy array.
|
||||
|
||||
Parameters:
|
||||
channel (int):
|
||||
The channel that should be used
|
||||
Returns:
|
||||
numpy.array: The loaded image of shape (channels, focus_level, width, height)
|
||||
'''
|
||||
"""Loads the whole image from files
|
||||
"""
|
||||
image_list = []
|
||||
for focus_level_list in self.files:
|
||||
channels = []
|
||||
@@ -111,54 +110,46 @@ class SituImage:
|
||||
self.data = np.array(image_list)
|
||||
|
||||
def unload_image(self):
|
||||
'''
|
||||
Unloads the image data to free up memory
|
||||
'''
|
||||
"""Unloads the image data to free up memory
|
||||
"""
|
||||
self.data = None
|
||||
|
||||
def show_channel(self, channel, focus_level=0):
|
||||
'''
|
||||
Prints and returns the specified channel and focus_level of the image.
|
||||
def show_channel(self, channel: int, focus_level: int = 0) -> Image:
|
||||
"""Prints and returns the specified channel and focus_level of the image.
|
||||
|
||||
Args:
|
||||
channel (int): The channel that should be used when printing
|
||||
focus_level (int, optional): The focus level that should be used. Defaults to 0.
|
||||
|
||||
Parameters:
|
||||
channel (int):
|
||||
The channel that should be used when printing
|
||||
focus_level (int) default: 0:
|
||||
The focus level that should be used
|
||||
Returns:
|
||||
image: The image of the specified focus level and channel
|
||||
'''
|
||||
img = Image.fromarray(self.get_data()[0, 0, :, :])
|
||||
Image: The image of the specified focus level and channel
|
||||
"""
|
||||
img = Image.fromarray(self.get_data()[channel, focus_level, :, :])
|
||||
img.show()
|
||||
return img
|
||||
|
||||
def get_channel_peaks(self, channel, focus_level=0, min_sigma=0.75, max_sigma=3, threshold=0.1):
|
||||
'''
|
||||
Returns the coordinates of peaks (local maxima) in the specified channel and focus_level.
|
||||
This method uses skimage blob_dog, therefore using difference of gaussian.
|
||||
def get_channel_peaks(self, channel: int, focus_level: int = 0) -> np.ndarray:
|
||||
"""Returns the coordinates of peaks (local maxima) in the specified channel and focus_level. It uses the self.
|
||||
|
||||
Args:
|
||||
channel (int): The channel that should be used when printing
|
||||
focus_level (int, optional): The focus level that should be used. Defaults to 0.
|
||||
|
||||
Parameters:
|
||||
channel (int):
|
||||
The channel that should be used when printing
|
||||
focus_level (int) default: 0:
|
||||
The focus level that should be used
|
||||
Returns:
|
||||
np.array: The peaks found by this method as np.array of shape (n, 2)
|
||||
'''
|
||||
np.ndarray: The peaks found by this method as np.array of shape (n, 2)
|
||||
"""
|
||||
return self.peak_finder.find_peaks(self.get_data()[channel, focus_level, :, :])
|
||||
|
||||
def show_channel_peaks(self, channel, focus_level=0):
|
||||
'''
|
||||
Returns and shows the found. Uses get_channel_peaks internally.
|
||||
def show_channel_peaks(self, channel: int, focus_level: int = 0) -> Image:
|
||||
"""Returns and shows the found peaks drawn onto the image. Uses get_channel_peaks internally.
|
||||
|
||||
Args:
|
||||
channel (int): The channel that should be used when printing
|
||||
focus_level (int, optional): The focus level that should be used. Defaults to 0.
|
||||
|
||||
Parameters:
|
||||
channel (int):
|
||||
The channel that should be used when printing
|
||||
focus_level (int) default: 0:
|
||||
The focus level that should be used
|
||||
Returns:
|
||||
image: The image of the specified focus level and channel with encircled peaks.
|
||||
'''
|
||||
Image: The image of the specified focus level and channel with encircled peaks.
|
||||
"""
|
||||
peaks = self.get_channel_peaks(
|
||||
channel, focus_level)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user