mirror of
https://github.com/13hannes11/situr.git
synced 2024-09-03 20:50:58 +02:00
autoformat code and add missing imports
This commit is contained in:
@@ -8,6 +8,7 @@ def extend_dim(array):
|
||||
ones = np.ones((array.shape[0], 1))
|
||||
return np.append(array, ones, axis=1)
|
||||
|
||||
|
||||
def remove_dim(array):
|
||||
return array[:, :-1]
|
||||
|
||||
@@ -107,7 +108,8 @@ class SituImage:
|
||||
np.array: The peaks found by this method as np.array of shape (n, 2)
|
||||
'''
|
||||
img = img_as_float(self.get_data()[channel, focus_level, :, :])
|
||||
peaks = blob_dog(img, min_sigma=min_sigma, max_sigma=max_sigma, threshold=threshold)
|
||||
peaks = blob_dog(img, min_sigma=min_sigma,
|
||||
max_sigma=max_sigma, threshold=threshold)
|
||||
return peaks[:, 0:2]
|
||||
|
||||
def show_channel_peaks(self, channel, focus_level=0, min_sigma=0.75, max_sigma=3, threshold=0.1):
|
||||
@@ -128,11 +130,13 @@ class SituImage:
|
||||
Returns:
|
||||
image: The image of the specified focus level and channel with encircled peaks.
|
||||
'''
|
||||
peaks = self.get_channel_peaks(channel, focus_level, min_sigma, max_sigma, threshold)
|
||||
peaks = self.get_channel_peaks(
|
||||
channel, focus_level, min_sigma, max_sigma, threshold)
|
||||
|
||||
img = Image.fromarray(self.get_data()[channel, focus_level, :, :])
|
||||
draw = ImageDraw.Draw(img)
|
||||
for x, y in zip(peaks[:, 0], peaks[:, 1]):
|
||||
draw.ellipse((x - 5, y - 5, x + 5, y + 5), outline ='white', width = 3)
|
||||
draw.ellipse((x - 5, y - 5, x + 5, y + 5),
|
||||
outline='white', width=3)
|
||||
img.show()
|
||||
return img
|
||||
@@ -1,3 +1,11 @@
|
||||
import abc
|
||||
import open3d as o3
|
||||
from probreg import filterreg
|
||||
from situr.image import extend_dim
|
||||
|
||||
from situr.transformation import ScaleRotateTranslateChannelTransform
|
||||
|
||||
|
||||
class ChannelRegistration:
|
||||
__metaclass__ = abc.ABCMeta
|
||||
|
||||
@@ -5,10 +13,13 @@ class ChannelRegistration:
|
||||
# For each channel (except nucleus) compute transform compared to reference_channel
|
||||
# Add Channel transformation to Channel
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def register_single_channel(self, peaks_data, reference_peaks):
|
||||
"""Performs the channel registration on an image. Expects the peaks in each image as input."""
|
||||
raise NotImplementedError(self.__class__.__name__ + '.register_single_channel')
|
||||
raise NotImplementedError(
|
||||
self.__class__.__name__ + '.register_single_channel')
|
||||
|
||||
|
||||
class FilterregChannelRegistration(ChannelRegistration):
|
||||
def register_single_channel(self, data_peaks, reference_peaks):
|
||||
|
||||
@@ -0,0 +1 @@
|
||||
from .channel_transformation import ChannelTransform, ScaleRotateTranslateChannelTransform
|
||||
|
||||
@@ -1,10 +1,16 @@
|
||||
import abc
|
||||
import numpy as np
|
||||
import scipy
|
||||
|
||||
|
||||
class ChannelTransform:
|
||||
__metaclass__ = abc.ABCMeta
|
||||
|
||||
@abc.abstractmethod
|
||||
def apply_transformation(self, situ_img, channel):
|
||||
"""Performs a transformation on one channel, all focus_levels are transformed the same way"""
|
||||
raise NotImplementedError(self.__class__.__name__ + '.apply_transformation')
|
||||
raise NotImplementedError(
|
||||
self.__class__.__name__ + '.apply_transformation')
|
||||
|
||||
|
||||
class ScaleRotateTranslateChannelTransform(ChannelTransform):
|
||||
@@ -23,6 +29,7 @@ class ScaleRotateTranslateChannelTransform(ChannelTransform):
|
||||
for focus_level in range(focus_levels):
|
||||
img = channel_img[focus_level, :, :]
|
||||
|
||||
img [:, :] = scipy.ndimage.affine_transform(img, self.transform_matrix)
|
||||
img[:, :] = scipy.ndimage.affine_transform(
|
||||
img, self.transform_matrix)
|
||||
img[:, :] = scipy.ndimage.zoom(img, self.scale)
|
||||
img[:, :] = scipy.ndimage.shift(img, self.offset)
|
||||
Reference in New Issue
Block a user