\section{Definitions} Set of \emph{variables}: \begin{equation} V = \{v_1, \dotsc, v_m\} \end{equation} A corresponding \emph{domain mapping function} that maps a variable to its possible values: \begin{equation} \mathfrak{D} : V \to D; x \mapsto \mathfrak{D}(x) \qquad where \ D = \{d_1, \dotsc, d_o\} \end{equation} Set of \emph{users}: \begin{equation} U = \{1, \dotsc, n\} \end{equation} A users \emph{utility function} for a domain value of a variable. This is the utility that a user has from a certain selected domain value. It is a function that only the user himself knows: \begin{equation} \begin{split} u_i(d_j), \qquad \text{where}\ & d_j \in \mathfrak{D}(j),\\ & 1 <= j <= m, \\ & 1 <= i <= n \end{split} \end{equation} \emph{User preferences} that are entered into the system by the user according to his utility function: \begin{gather} P = \{ P_1, \dotsc, P_n\},\ \text{where} \\ P_i = \{(d,\ u_i(d)) \ | \ \forall d \in \mathfrak{D}(i),\ i=1,\dotsc,m \} \notag \end{gather} A \emph{configuration} has a state it is defined by a tuple of variables and their corresponding domain value. Essentially it is a set of variables and assigned values: \begin{equation} S = \{ (v_i,\ d) \ |\ v_i \in V \ \land \ d \in \mathfrak{D}(i),\ i=1,\dotsc,m \} \end{equation} A \emph{finished configuration} is a configuration that contains all variables: \begin{equation} \begin{split} S_F \subset S,\ where \ & \forall v_i \in V (\exists (v_i, d) \in S_F : d \in \mathfrak{D}(i)) \\ & \land is\_valid(S_F) \end{split} \end{equation} % TODO: define valid configuration state \emph{Group configuration scoring function} using preferences and current configuration state. This function gives a score for a finished configuration (while using the current configuration state and all user preferences): \begin{equation} score_{group}: S \times P \times S_F \to \mathbb{R} \end{equation} An example group configuration scoring function is $score_{group}$ with \begin{equation} \notag \alpha \in \mathbb{R}, \qquad changed(d,\overline{s}, s) = \begin{cases} 1, & d \in \overline{s} \land d \notin s \\ 0, & \text{otherwise} \end{cases} \end{equation} \begin{equation} \begin{split} score_{group}(\overline{s},\ \overline{p},\ s) & = score(\overline{p},\ s) - penalty(\overline{s},\ s) \\ & = score(\overline{p},\ s) - \sum_{d \in \overline{s}} changed(d,\overline{s}, s) \cdot \alpha \end{split} \end{equation} \begin{mdframed}[frametitle={Forest Example}] In this example we have two users. The use case is a piece of forest and variables are for example harvesting activity, which trees to grow and accessibility for people. \begin{align} \begin{split} V = \{ & \textit{Heimisch}, \textit{Klimaresilient}, \textit{Verwertbar}, \textit{Ernteaufwand}, \\ & \textit{Menge}, \textit{Preis}, \textit{Walderfahrung} \}, \end{split} \notag \\ \mathfrak{D}(\textit{Heimisch}) = \{ & \text{Gering}, \text{Mittel}, \text{Hoch}\}, \notag \\ \mathfrak{D}(\textit{Klimaresilient}) = \{ & \text{Gering}, \text{Mittel}, \text{Hoch}\}, \notag \\ \mathfrak{D}(\textit{Verwertbar}) = \{ & \text{Gering}, \text{Mittel}, \text{Hoch}\}, \notag \\ \mathfrak{D}(\textit{Ernteaufwand}) = \{ & \text{Motormanuel}, \text{Harvester}, \text{Vollautomatisch}\}, \notag \\ \mathfrak{D}(\textit{Menge}) = \{ & \text{Keine}, \text{Gering}, \text{Hoch}\}, \notag \\ \mathfrak{D}(\textit{Preis}) = \{ & \text{Gering}, \text{Mittel}, \text{Hoch}\}, \notag\\ \mathfrak{D}(\textit{Walderfahrung}) = \{ & \text{Gering}, \text{Mittel}, \text{Intensiv}\},\notag \\ U = \{ & 1,2\} \notag\\ P = \{ & P_1, P_2\} \notag\\ \begin{split} P_1 = \{ & (\text{Motormanuel}, 0.5), (\text{Harvester}, -0.3) \} \\ & \cup \{ (d,0)\ |\ d \in \mathfrak{D}(i),\ i \in V,\ i \notin \{ \text{Motormanuel}, \text{Harvester}\} \ \} \ \end{split} \notag \\ P_2 = \{ & (d,0)\ |\ d \in \mathfrak{D}(i),\ i \in V \} \notag \\ S = \{ & (\textit{Heimisch}, \text{Gering}), (\textit{Menge}, \text{Gering}) \} \notag \\ \begin{split} S_F = \{ & (\textit{Heimisch}, \text{Gering}), (\textit{Klimaresilient}, \text{Gering}), (\textit{Verwertbar}, \text{Gering}), \\ & (\textit{Ernteaufwand}, \text{Motormanuel}), (\textit{Menge}, \text{Keine}), (\textit{Preis}, \text{Hoch}),\\ & (\textit{Walderfahrung}, \text{Gering}) \} \end{split} \notag \end{align} \end{mdframed} \section{Recommender Systems} \subsection{Advantages over Collaborative Filtering} \begin{itemize} \item No cold start problem for items \item No grey sheep problem as not dependent on similar groups having existed before. \item Domain knowledge is existent \item No issues with data sparsity as item description is given by product structure \item No reliance on preferences that would result in a comparison space that is too large \item No dependence of historic group preference accuracy \end{itemize} \subsection{Advantages over Constrained-Based Recommendation} \begin{itemize} \item Configuration state does not cause absence of recommendations \item Expendable to also support constraints \item No need to handle inconsistencies explicitly \end{itemize} \begin{table} \begin{center} \begin{tabularx}{\columnwidth}{X|X|X} \hline Collaborative Filtering & \begin{itemize} \item Serendipity of results \item Automatic learning of market segments \item Grey sheep problem \item No domain knowledge required \end{itemize} & \begin{itemize} \item Cold start problem for users and items \item Grey sheep problem \item Quality based on rating quality \item Data sparsity \item Privacy not guaranteed \end{itemize} \\ \hline Content-Based Filtering & \begin{itemize} \item No community required \item User independent \item Transparent \item No item cold start \item Simplicity \item Robust \item Stable to constant influx of new users \item Possible to have profitability metric \end{itemize} & \begin{itemize} \item Overspecialisation \item No serendipity \item User cold start problem \item Requires domain knowledge \end{itemize} \\ \hline Constraint-Based Recommendation & \begin{itemize} \item Transparent \item Good for non discrete values \end{itemize} & \begin{itemize} \item Inconsistent constraints \item No results \end{itemize} \\ \end{tabularx} \caption{A description of the advantages and disadvantages of common recommendation techniques} \label{tab:RecommenderComparison} \end{center} \end{table} \FloatBarrier