mirror of
https://github.com/13hannes11/bachelor_thesis.git
synced 2024-09-04 01:11:00 +02:00
move some definitions to concepot section
This commit is contained in:
@@ -23,46 +23,13 @@ and \emph{constraints} $C$ that limit the solution space with
|
|||||||
C = \{c_1, \cdots, c_k\}.
|
C = \{c_1, \cdots, c_k\}.
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
\subsection{Configuration State}
|
In group-based configuration (also known as collaborative or group configuration) a group instead of a single user is set to configure a configuration. This entails challenges in terms of synchronising workspaces and keeping the data consistent for every group member. \citeauthor{raabKollaborativeProduktkonfigurationEchtzeit2019}'s \cite{raabKollaborativeProduktkonfigurationEchtzeit2019} approach, which this thesis extends, is to treat the group configuration the same as one shared configuration and to sync the selection of attributes across clients.
|
||||||
|
|
||||||
A \emph{configuration} $S$ will be defined as a tuple of variables (\autoref{eq:Foundations:ProductConfiguration:Variables}) and their corresponding domain value with
|
\subsection{Group-Based Product Configuration}
|
||||||
\begin{equation} \label{eq:Foundations:ProductConfiguration:ConfigurationState}
|
|
||||||
S = \{ (v_i,\ d) \ |\ v_i \in V \ \land \ d \in \mathfrak{D}(i),\ i=1,\dotsc,m \}.
|
|
||||||
\end{equation}
|
|
||||||
Essentially it is a set of variables and assigned values.
|
|
||||||
|
|
||||||
\subsection{Finished Configuration}
|
|
||||||
To define what a \emph{finished configuration} is, it is required to first define what it means for a configuration to be valid. Therefore $is\_valid$ is defined as
|
|
||||||
\begin{equation} \label{eq:Foundations:ProductConfiguration:IsValid}
|
|
||||||
is\_valid : S \to \{true, false\}; x \mapsto
|
|
||||||
\begin{cases}
|
|
||||||
true, & S \in solution\_space \\
|
|
||||||
false, & \text{otherwise}
|
|
||||||
\end{cases},
|
|
||||||
\end{equation}
|
|
||||||
with $solution\_space$ being the solution space of the corresponding constraint satisfaction problem. A \emph{finished configuration} $S_F$ is a configuration that contains all variables and is a valid configuration:
|
|
||||||
\begin{equation} \label{eq:Foundations:ProductConfiguration:FinishedConfiguration}
|
|
||||||
S_F \subset S,\ where \ \forall v_i \in V (\exists (v_i, d) \in S_F : d \in \mathfrak{D}(i)) \land is\_valid(S_F).
|
|
||||||
\end{equation}
|
|
||||||
In practice a finished configuration of a product (or solution) is something that is ready to be produced. For example if a care is being configured, this means that the car could be produced in the specified way that is given by the finished configuration.
|
|
||||||
|
|
||||||
|
|
||||||
\section{Group-Based Product Configuration}
|
|
||||||
\label{sec:Foundations:GroupBasedProductConfiguration}
|
\label{sec:Foundations:GroupBasedProductConfiguration}
|
||||||
|
|
||||||
Instead of a single person configuring a product, a group of people is configuring one product which can be useful in multi-stakeholder decisions. This setting needs mechanisms for describing the preferences of multiple people. Therefore to the definitions there will be added a set of users $U$ with
|
\todo[inline]{write here about group based configuration and challanges posed by it}
|
||||||
\begin{equation}\label{eq:Foundations:ProductConfiguration:Users}
|
|
||||||
U = \{1, \dotsc, n\},
|
|
||||||
\end{equation}
|
|
||||||
a users \emph{utility function} that maps a domain value to a utility value and is only known to the user
|
|
||||||
\begin{equation}
|
|
||||||
\begin{split}
|
|
||||||
u_i(d_j), \qquad \text{where}\ & d_j \in \mathfrak{D}(j),\\
|
|
||||||
& 1 <= j <= m, \\
|
|
||||||
& 1 <= i <= n .
|
|
||||||
\end{split}
|
|
||||||
\end{equation}
|
|
||||||
\citeauthor{raabKollaborativeProduktkonfigurationEchtzeit2019}'s \cite{raabKollaborativeProduktkonfigurationEchtzeit2019} approach, which this thesis extends, is to treat the group configuration the same as one shared configuration and to sync the selection of attributes across clients.
|
|
||||||
|
|
||||||
\section{Recommender System}
|
\section{Recommender System}
|
||||||
\label{sec:Foundations:RecommenderSystem}
|
\label{sec:Foundations:RecommenderSystem}
|
||||||
|
|||||||
@@ -1,6 +1,64 @@
|
|||||||
\chapter{Concept}
|
\chapter{Concept}
|
||||||
\label{ch:Concept}
|
\label{ch:Concept}
|
||||||
|
|
||||||
|
\section{Foundations Extension}
|
||||||
|
\label{sec:Concept:Requirements}
|
||||||
|
|
||||||
|
The definitions described in \autoref{ch:Foundations} need to be extended for this thesis. This section adds definitions that are needed.
|
||||||
|
|
||||||
|
\subsection{Configuration State}
|
||||||
|
|
||||||
|
A \emph{configuration} $S$ will be defined as a tuple of variables (\autoref{eq:Foundations:ProductConfiguration:Variables}) and their corresponding domain value with
|
||||||
|
\begin{equation} \label{eq:Foundations:ProductConfiguration:ConfigurationState}
|
||||||
|
S = \{ (v_i,\ d) \ |\ v_i \in V \ \land \ d \in \mathfrak{D}(i),\ i=1,\dotsc,m \}.
|
||||||
|
\end{equation}
|
||||||
|
Essentially it is a set of variables and assigned values.
|
||||||
|
|
||||||
|
\subsection{Finished Configuration}
|
||||||
|
To define what a \emph{finished configuration} is, it is required to first define what it means for a configuration to be valid. Therefore $is\_valid$ is defined as
|
||||||
|
\begin{equation} \label{eq:Foundations:ProductConfiguration:IsValid}
|
||||||
|
is\_valid : S \to \{true, false\}; x \mapsto
|
||||||
|
\begin{cases}
|
||||||
|
true, & S \in solution\_space \\
|
||||||
|
false, & \text{otherwise}
|
||||||
|
\end{cases},
|
||||||
|
\end{equation}
|
||||||
|
with $solution\_space$ being the solution space of the corresponding constraint satisfaction problem. A \emph{finished configuration} $S_F$ is a configuration that contains all variables and is a valid configuration:
|
||||||
|
\begin{equation} \label{eq:Foundations:ProductConfiguration:FinishedConfiguration}
|
||||||
|
S_F \subset S,\ where \ \forall v_i \in V (\exists (v_i, d) \in S_F : d \in \mathfrak{D}(i)) \land is\_valid(S_F).
|
||||||
|
\end{equation}
|
||||||
|
In practice a finished configuration of a product (or solution) is something that is ready to be produced. For example if a care is being configured, this means that the car could be produced in the specified way that is given by the finished configuration.
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{Group-Based Product Configuration}
|
||||||
|
\label{sec:Foundations:GroupBasedProductConfiguration}
|
||||||
|
|
||||||
|
Instead of a single person configuring a product, a group of people is configuring one product which can be useful in multi-stakeholder decisions. This setting needs mechanisms for describing the preferences of multiple people. Therefore to the definitions there will be added a set of users $U$ with
|
||||||
|
\begin{equation}\label{eq:Foundations:ProductConfiguration:Users}
|
||||||
|
U = \{1, \dotsc, n\},
|
||||||
|
\end{equation}
|
||||||
|
a users \emph{utility function} that maps a domain value to a utility value and is only known to the user
|
||||||
|
\begin{equation}
|
||||||
|
\begin{split}
|
||||||
|
u_i(d_j), \qquad \text{where}\ & d_j \in \mathfrak{D}(j),\\
|
||||||
|
& 1 <= j <= m, \\
|
||||||
|
& 1 <= i <= n .
|
||||||
|
\end{split}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
|
||||||
|
\section{Requirements}
|
||||||
|
\label{sec:Concept:Requirements}
|
||||||
|
|
||||||
|
\section{Assumptions}
|
||||||
|
\label{sec:Concept:Assumptions}
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
\item Only one product/solution is supposed to be configured
|
||||||
|
\item Features only support single value attributes
|
||||||
|
\item Users join the system and start configuring once all group members have joined
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
\section{User Interaction with the System}
|
\section{User Interaction with the System}
|
||||||
\label{sec:Concept:UserSystemInteraction}
|
\label{sec:Concept:UserSystemInteraction}
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user