mirror of
https://github.com/13hannes11/bachelor_thesis.git
synced 2024-09-04 01:11:00 +02:00
reorganize document
This commit is contained in:
175
25_Outline/sections/20_foundations.tex
Normal file
175
25_Outline/sections/20_foundations.tex
Normal file
@@ -0,0 +1,175 @@
|
||||
\section{Definitions}
|
||||
|
||||
Set of \emph{variables}:
|
||||
\begin{equation}
|
||||
V = \{v_1, \dotsc, v_m\}
|
||||
\end{equation}
|
||||
|
||||
A corresponding \emph{domain mapping function} that maps a variable to its possible values:
|
||||
\begin{equation}
|
||||
\mathfrak{D} : V \to D; x \mapsto \mathfrak{D}(x) \qquad where \ D = \{d_1, \dotsc, d_o\}
|
||||
\end{equation}
|
||||
|
||||
Set of \emph{users}:
|
||||
\begin{equation}
|
||||
U = \{1, \dotsc, n\}
|
||||
\end{equation}
|
||||
|
||||
A users \emph{utility function} for a domain value of a variable. This is the utility that a user has from a certain selected domain value. It is a function that only the user himself knows:
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
u_i(d_j), \qquad \text{where}\ & d_j \in \mathfrak{D}(j),\\
|
||||
& 1 <= j <= m, \\
|
||||
& 1 <= i <= n
|
||||
\end{split}
|
||||
\end{equation}
|
||||
|
||||
\emph{User preferences} that are entered into the system by the user according to his utility function:
|
||||
\begin{gather}
|
||||
P = \{ P_1, \dotsc, P_n\},\ \text{where} \\
|
||||
P_i = \{(d,\ u_i(d)) \ | \ \forall d \in \mathfrak{D}(i),\ i=1,\dotsc,m \} \notag
|
||||
\end{gather}
|
||||
|
||||
A \emph{configuration} has a state it is defined by a tuple of variables and their corresponding domain value. Essentially it is a set of variables and assigned values:
|
||||
\begin{equation}
|
||||
S = \{ (v_i,\ d) \ |\ v_i \in V \ \land \ d \in \mathfrak{D}(i),\ i=1,\dotsc,m \}
|
||||
\end{equation}
|
||||
|
||||
A \emph{finished configuration} is a configuration that contains all variables:
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
S_F \subset S,\ where \ & \forall v_i \in V (\exists (v_i, d) \in S_F : d \in \mathfrak{D}(i)) \\
|
||||
& \land is\_valid(S_F)
|
||||
\end{split}
|
||||
\end{equation}
|
||||
|
||||
% TODO: define valid configuration state
|
||||
|
||||
\emph{Group configuration scoring function} using preferences and current configuration state. This function gives a score for a finished configuration (while using the current configuration state and all user preferences):
|
||||
|
||||
\begin{equation}
|
||||
score_{group}: S \times P \times S_F \to \mathbb{R}
|
||||
\end{equation}
|
||||
|
||||
An example group configuration scoring function is $score_{group}$ with
|
||||
|
||||
\begin{equation}
|
||||
\notag \alpha \in \mathbb{R}, \qquad changed(d,\overline{s}, s) =
|
||||
\begin{cases}
|
||||
1, & d \in \overline{s} \land d \notin s \\
|
||||
0, & \text{otherwise}
|
||||
\end{cases}
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
score_{group}(\overline{s},\ \overline{p},\ s)
|
||||
& = score(\overline{p},\ s) - penalty(\overline{s},\ s) \\
|
||||
& = score(\overline{p},\ s) - \sum_{d \in \overline{s}} changed(d,\overline{s}, s) \cdot \alpha
|
||||
\end{split}
|
||||
\end{equation}
|
||||
|
||||
\begin{mdframed}[frametitle={Forest Example}]
|
||||
In this example we have two users. The use case is a piece of forest and variables are for example harvesting activity, which trees to grow and accessibility for people.
|
||||
\begin{align}
|
||||
\begin{split}
|
||||
V = \{ & \textit{Heimisch}, \textit{Klimaresilient}, \textit{Verwertbar}, \textit{Ernteaufwand}, \\
|
||||
& \textit{Menge}, \textit{Preis}, \textit{Walderfahrung} \},
|
||||
\end{split} \notag \\
|
||||
\mathfrak{D}(\textit{Heimisch}) = \{ & \text{Gering}, \text{Mittel}, \text{Hoch}\}, \notag \\
|
||||
\mathfrak{D}(\textit{Klimaresilient}) = \{ & \text{Gering}, \text{Mittel}, \text{Hoch}\}, \notag \\
|
||||
\mathfrak{D}(\textit{Verwertbar}) = \{ & \text{Gering}, \text{Mittel}, \text{Hoch}\}, \notag \\
|
||||
\mathfrak{D}(\textit{Ernteaufwand}) = \{ & \text{Motormanuel}, \text{Harvester}, \text{Vollautomatisch}\}, \notag \\
|
||||
\mathfrak{D}(\textit{Menge}) = \{ & \text{Keine}, \text{Gering}, \text{Hoch}\}, \notag \\
|
||||
\mathfrak{D}(\textit{Preis}) = \{ & \text{Gering}, \text{Mittel}, \text{Hoch}\}, \notag\\
|
||||
\mathfrak{D}(\textit{Walderfahrung}) = \{ & \text{Gering}, \text{Mittel}, \text{Intensiv}\},\notag \\
|
||||
U = \{ & 1,2\} \notag\\
|
||||
P = \{ & P_1, P_2\} \notag\\
|
||||
\begin{split}
|
||||
P_1 = \{ & (\text{Motormanuel}, 0.5), (\text{Harvester}, -0.3) \} \\
|
||||
& \cup \{ (d,0)\ |\ d \in \mathfrak{D}(i),\ i \in V,\ i \notin \{ \text{Motormanuel}, \text{Harvester}\} \ \} \
|
||||
\end{split} \notag \\
|
||||
P_2 = \{ & (d,0)\ |\ d \in \mathfrak{D}(i),\ i \in V \} \notag \\
|
||||
S = \{ & (\textit{Heimisch}, \text{Gering}), (\textit{Menge}, \text{Gering}) \} \notag \\
|
||||
\begin{split}
|
||||
S_F = \{ & (\textit{Heimisch}, \text{Gering}), (\textit{Klimaresilient}, \text{Gering}), (\textit{Verwertbar}, \text{Gering}), \\
|
||||
& (\textit{Ernteaufwand}, \text{Motormanuel}),
|
||||
(\textit{Menge}, \text{Keine}), (\textit{Preis}, \text{Hoch}),\\
|
||||
& (\textit{Walderfahrung}, \text{Gering}) \}
|
||||
\end{split} \notag
|
||||
\end{align}
|
||||
\end{mdframed}
|
||||
|
||||
\section{Recommender Systems}
|
||||
|
||||
\subsection{Advantages over Collaborative Filtering}
|
||||
\begin{itemize}
|
||||
\item No cold start problem for items
|
||||
\item No grey sheep problem as not dependent on similar groups having existed before.
|
||||
\item Domain knowledge is existent
|
||||
\item No issues with data sparsity as item description is given by product structure
|
||||
\item No reliance on preferences that would result in a comparison space that is too large
|
||||
\item No dependence of historic group preference accuracy
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Advantages over Constrained-Based Recommendation}
|
||||
|
||||
\begin{itemize}
|
||||
\item Configuration state does not cause absence of recommendations
|
||||
\item Expendable to also support constraints
|
||||
\item No need to handle inconsistencies explicitly
|
||||
\end{itemize}
|
||||
|
||||
\begin{table}
|
||||
\begin{center}
|
||||
\begin{tabularx}{\columnwidth}{X|X|X}
|
||||
\hline
|
||||
Collaborative Filtering
|
||||
& \begin{itemize}
|
||||
\item Serendipity of results
|
||||
\item Automatic learning of market segments
|
||||
\item Grey sheep problem
|
||||
\item No domain knowledge required
|
||||
\end{itemize}
|
||||
& \begin{itemize}
|
||||
\item Cold start problem for users and items
|
||||
\item Grey sheep problem
|
||||
\item Quality based on rating quality
|
||||
\item Data sparsity
|
||||
\item Privacy not guaranteed
|
||||
\end{itemize} \\
|
||||
\hline
|
||||
Content-Based Filtering
|
||||
& \begin{itemize}
|
||||
\item No community required
|
||||
\item User independent
|
||||
\item Transparent
|
||||
\item No item cold start
|
||||
\item Simplicity
|
||||
\item Robust
|
||||
\item Stable to constant influx of new users
|
||||
\item Possible to have profitability metric
|
||||
\end{itemize}
|
||||
& \begin{itemize}
|
||||
\item Overspecialisation
|
||||
\item No serendipity
|
||||
\item User cold start problem
|
||||
\item Requires domain knowledge
|
||||
\end{itemize} \\
|
||||
\hline
|
||||
Constraint-Based Recommendation
|
||||
& \begin{itemize}
|
||||
\item Transparent
|
||||
\item Good for non discrete values
|
||||
\end{itemize}
|
||||
& \begin{itemize}
|
||||
\item Inconsistent constraints
|
||||
\item No results
|
||||
\end{itemize} \\
|
||||
\end{tabularx}
|
||||
\caption{A description of the advantages and disadvantages of common recommendation techniques}
|
||||
\label{tab:RecommenderComparison}
|
||||
\end{center}
|
||||
\end{table}
|
||||
|
||||
\FloatBarrier
|
||||
Reference in New Issue
Block a user