Files
UU_NCML_Project/preprocess_uk.py

44 lines
1.4 KiB
Python

import pandas as pd
import os
# Preprocess data
vote_counter = -1
data = pd.DataFrame()
name_column = 'Member'
vote_column = 'Vote'
vote_column_to_title = {}
voting_features = {'Aye':0, 'No':1, 'No Vote Recorded':2}
for dirname, _, filenames in os.walk('./uk/csv'):
for filename in filenames:
vote_counter += 1
print(os.path.join(dirname, filename))
# Read title rows
title_df = pd.read_csv(os.path.join(dirname, filename),nrows=(3),skip_blank_lines=True,header=None)
# Read data rows
df = pd.read_csv(os.path.join(dirname, filename),skiprows=(10))
# Give each voting behaviour type an identifier from 0 to len(voting_features) - 1
df[vote_column].replace(voting_features, inplace=True)
#Replace the vote column name
vote_column_name = f'vote_{vote_counter}'
df=df.rename(columns={vote_column:vote_column_name})
# Map column name of vote to title -> allows retrieving what the vote was about
vote_column_to_title[vote_column_name] = title_df.iat[2,0]
if data.empty:
# if first file that is loaded set data equal to data from first file
data = df[[name_column, vote_column_name]]
else:
# merge data with already loaded data
data = data.merge(df[[name_column, vote_column_name]], on=name_column)
print(vote_column_to_title)
print(data)