Files
UU_NCML_Project/voting_lib/load_data.py

109 lines
4.0 KiB
Python
Executable File

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os
import pandas as pd
import numpy as np
def load_german_data():
"""
Load German Parliament data
return : Data with columns [Member, Party, vote_0, vote_1 etc]
"""
title_file = "filename_to_titles.csv"
vote_counter = -1
#data = pd.DataFrame()
data = {}
period_column_g = 'Wahlperiode'
name_column_g = 'Bezeichnung'
party_column_g = 'Fraktion/Gruppe'
name_column = 'Member'
party_column = 'Party'
vote_column_to_title = {}
voting_features = ['ja', 'nein', 'Enthaltung', 'ungültig']
for dirname, _, filenames in os.walk('./de/csv'):
for filename in filenames:
if filename != title_file:
print(filename)
vote_counter += 1
df = pd.read_csv(os.path.join(dirname, filename))
# Give each voting behaviour type an identifier from 0 to len(voting_features) - 1
for i, feature in enumerate(voting_features):
df[feature] *= i
vote_column_name = f'vote_{vote_counter}'
# Map column name of vote to filename -> allows retrieving what the vote was about
vote_column_to_title[vote_column_name] = filename
# add feature for the vote
df[vote_column_name] = df[voting_features].sum(axis=1)
df=df.rename(columns={name_column_g:name_column,party_column_g:party_column})
period = df.iloc[0][period_column_g]
if period in data:
# merge data with already loaded data
data[period] = data[period].merge(df[[name_column, vote_column_name]], on=name_column)
else:
# if first file that is loaded set data equal to data from first file
data[period] = df[[name_column, party_column, vote_column_name]]
print(data)
return data
def load_uk_data(path):
"""
Load German Parliament data
return : Data with columns [Member, Party, vote_0, vote_1 etc]
"""
#print directory path
print(path)
# Preprocess data
vote_counter = -1
data = pd.DataFrame()
name_column = 'Member'
party_column = 'Party'
vote_column = 'Vote'
column_to_filename = {}
voting_features = {'Aye':0, 'Teller - Ayes':0, 'No':1, 'Teller - Noes':1, 'No Vote Recorded':2}
for dirname, _, filenames in os.walk(path):
for filename in filenames:
vote_counter += 1
# Read title rows
# sep is set to new line so it never splits up the title cells
title_df = pd.read_csv(os.path.join(dirname, filename), sep='\n',nrows=(3),skip_blank_lines=True,header=None)
# Read data rows
df = pd.read_csv(os.path.join(dirname, filename),skiprows=(10))
# Give each voting behaviour type an identifier from 0 to len(voting_features) - 1
df[vote_column].replace(voting_features, inplace=True)
#Replace the vote column name
vote_column_name = f'vote_{vote_counter}'
df=df.rename(columns={vote_column:vote_column_name})
# Map column name of vote to title -> allows retrieving what the vote was about
column_to_filename[vote_column_name] = title_df.iat[2,0]
if data.empty:
# if first file that is loaded set data equal to data from first file
data = df[[name_column, party_column, vote_column_name]]
else:
# merge data with already loaded data
data = data.merge(df[[name_column, vote_column_name]], on=name_column)
print(data)
return data