mirror of
https://github.com/13hannes11/UU_NCML_Project.git
synced 2024-09-03 20:50:59 +02:00
109 lines
4.0 KiB
Python
Executable File
109 lines
4.0 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
|
|
import os
|
|
import pandas as pd
|
|
import numpy as np
|
|
|
|
def load_german_data():
|
|
"""
|
|
Load German Parliament data
|
|
return : Data with columns [Member, Party, vote_0, vote_1 etc]
|
|
"""
|
|
title_file = "filename_to_titles.csv"
|
|
vote_counter = -1
|
|
#data = pd.DataFrame()
|
|
data = {}
|
|
|
|
period_column_g = 'Wahlperiode'
|
|
name_column_g = 'Bezeichnung'
|
|
party_column_g = 'Fraktion/Gruppe'
|
|
name_column = 'Member'
|
|
party_column = 'Party'
|
|
|
|
vote_column_to_title = {}
|
|
|
|
voting_features = ['ja', 'nein', 'Enthaltung', 'ungültig']
|
|
for dirname, _, filenames in os.walk('./de/csv'):
|
|
for filename in filenames:
|
|
if filename != title_file:
|
|
|
|
print(filename)
|
|
|
|
vote_counter += 1
|
|
df = pd.read_csv(os.path.join(dirname, filename))
|
|
|
|
# Give each voting behaviour type an identifier from 0 to len(voting_features) - 1
|
|
for i, feature in enumerate(voting_features):
|
|
df[feature] *= i
|
|
vote_column_name = f'vote_{vote_counter}'
|
|
|
|
# Map column name of vote to filename -> allows retrieving what the vote was about
|
|
vote_column_to_title[vote_column_name] = filename
|
|
|
|
# add feature for the vote
|
|
df[vote_column_name] = df[voting_features].sum(axis=1)
|
|
|
|
df=df.rename(columns={name_column_g:name_column,party_column_g:party_column})
|
|
|
|
period = df.iloc[0][period_column_g]
|
|
|
|
if period in data:
|
|
# merge data with already loaded data
|
|
data[period] = data[period].merge(df[[name_column, vote_column_name]], on=name_column)
|
|
else:
|
|
# if first file that is loaded set data equal to data from first file
|
|
data[period] = df[[name_column, party_column, vote_column_name]]
|
|
|
|
print(data)
|
|
return data
|
|
|
|
|
|
def load_uk_data(path):
|
|
"""
|
|
Load German Parliament data
|
|
return : Data with columns [Member, Party, vote_0, vote_1 etc]
|
|
"""
|
|
#print directory path
|
|
print(path)
|
|
# Preprocess data
|
|
vote_counter = -1
|
|
data = pd.DataFrame()
|
|
|
|
name_column = 'Member'
|
|
party_column = 'Party'
|
|
vote_column = 'Vote'
|
|
|
|
column_to_filename = {}
|
|
|
|
voting_features = {'Aye':0, 'Teller - Ayes':0, 'No':1, 'Teller - Noes':1, 'No Vote Recorded':2}
|
|
for dirname, _, filenames in os.walk(path):
|
|
for filename in filenames:
|
|
vote_counter += 1
|
|
|
|
# Read title rows
|
|
# sep is set to new line so it never splits up the title cells
|
|
title_df = pd.read_csv(os.path.join(dirname, filename), sep='\n',nrows=(3),skip_blank_lines=True,header=None)
|
|
|
|
# Read data rows
|
|
df = pd.read_csv(os.path.join(dirname, filename),skiprows=(10))
|
|
|
|
# Give each voting behaviour type an identifier from 0 to len(voting_features) - 1
|
|
df[vote_column].replace(voting_features, inplace=True)
|
|
|
|
#Replace the vote column name
|
|
vote_column_name = f'vote_{vote_counter}'
|
|
df=df.rename(columns={vote_column:vote_column_name})
|
|
|
|
# Map column name of vote to title -> allows retrieving what the vote was about
|
|
column_to_filename[vote_column_name] = title_df.iat[2,0]
|
|
|
|
if data.empty:
|
|
# if first file that is loaded set data equal to data from first file
|
|
data = df[[name_column, party_column, vote_column_name]]
|
|
else:
|
|
# merge data with already loaded data
|
|
data = data.merge(df[[name_column, vote_column_name]], on=name_column)
|
|
|
|
print(data)
|
|
return data |