import pandas as pd import os # Preprocess data vote_counter = -1 data = pd.DataFrame() name_column = 'Bezeichnung' column_to_filename = {} voting_features = ['ja', 'nein', 'Enthaltung', 'ungültig'] for dirname, _, filenames in os.walk('./de/csv'): for filename in filenames: vote_counter += 1 print(os.path.join(dirname, filename)) df = pd.read_csv(os.path.join(dirname, filename)) # Give each voting behaviour type an identifier from 0 to len(voting_features) - 1 for i, feature in enumerate(voting_features): df[feature] *= i vote_column_name = f'vote_{vote_counter}' # Map column name of vote to filename -> allows retrieving what the vote was about column_to_filename[vote_column_name] = filename # add feature for the vote df[vote_column_name] = df[voting_features].sum(axis=1) if data.empty: # if first file that is loaded set data equal to data from first file data = df[[name_column, vote_column_name]] else: # merge data with already loaded data data = data.merge(df[[name_column, vote_column_name]], on=name_column) print(column_to_filename) print(data)