mirror of
https://github.com/13hannes11/UU_NCML_Project.git
synced 2024-09-03 20:50:59 +02:00
rename german analysis to match uk
This commit is contained in:
34
de_analysis.py
Executable file
34
de_analysis.py
Executable file
@@ -0,0 +1,34 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import voting_lib.load_data as ld
|
||||
import voting_lib.voting_analysis as va
|
||||
import voting_lib.political_compass as pc
|
||||
import numpy as np
|
||||
|
||||
# Training Paramters
|
||||
# Grid size is chosen such that node count = 5*sqrt(N)
|
||||
grid_h = 11 # Grid height
|
||||
grid_w = 11 # Grid width
|
||||
radius = 2 # Neighbour radius
|
||||
step = 0.5
|
||||
ep = 100 # No of epochs
|
||||
|
||||
# Load data
|
||||
dataset = ld.load_german_data()
|
||||
|
||||
period_to_compass_year = {17:2005, 18:2013, 19:2017}
|
||||
|
||||
for period, df in dataset.items():
|
||||
|
||||
print("Election Period ", period)
|
||||
data = df.to_numpy()
|
||||
|
||||
X = data[:,2:]
|
||||
|
||||
# Train model
|
||||
model = va.train_model(X, grid_h, grid_w, radius, step, ep)
|
||||
|
||||
# Predict and visualize output
|
||||
va.predict(model, data, grid_h, grid_w, pc.get_compass_parties(year=period_to_compass_year[period], country='de'))
|
||||
|
||||
Reference in New Issue
Block a user