mirror of
https://github.com/13hannes11/UU_NCML_Project.git
synced 2024-09-03 20:50:59 +02:00
load political compass data for uk in uk analysis
This commit is contained in:
@@ -5,6 +5,7 @@
|
||||
|
||||
import voting_lib.load_data as ld
|
||||
import voting_lib.voting_analysis as va
|
||||
import voting_lib.political_compass as pc
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import os
|
||||
@@ -16,14 +17,15 @@ grid_h = 30 # Grid height
|
||||
grid_w = 30 # Grid width
|
||||
radius = 3 # Neighbour radius
|
||||
step = 0.5
|
||||
ep = 100 # No of epochs
|
||||
ep = 1 # No of epochs
|
||||
|
||||
|
||||
period_to_compass_year = {'2015_uk':2015, '2017_uk':2017, '2019_uk':2019}
|
||||
main_directory = 'uk/csv'
|
||||
for dirname, _, filenames in os.walk(main_directory):
|
||||
if dirname == main_directory: #to skip main directory path
|
||||
continue
|
||||
else:
|
||||
elif os.path.isdir(dirname):
|
||||
# Load data
|
||||
data = ld.load_uk_data(dirname).to_numpy()
|
||||
|
||||
@@ -31,4 +33,4 @@ for dirname, _, filenames in os.walk(main_directory):
|
||||
|
||||
model = va.train_model(X, grid_h, grid_w, radius, step, ep)
|
||||
# Predict and visualize output
|
||||
va.predict(model, data, grid_h, grid_w)
|
||||
va.predict(model, data, grid_h, grid_w, pc.get_compass_parties(year=period_to_compass_year[dirname.split('/')[-1]], country='uk'))
|
||||
Reference in New Issue
Block a user