mirror of
https://github.com/13hannes11/UU_NCML_Project.git
synced 2024-09-03 20:50:59 +02:00
cleaned up uk code for data loading
This commit is contained in:
109
load_data.py
109
load_data.py
@@ -1,109 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import os
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
def load_german_data():
|
||||
"""
|
||||
Load German Parliament data
|
||||
return : Data with columns [Member, Party, vote_0, vote_1 etc]
|
||||
"""
|
||||
title_file = "filename_to_titles.csv"
|
||||
vote_counter = -1
|
||||
#data = pd.DataFrame()
|
||||
data = {}
|
||||
|
||||
period_column_g = 'Wahlperiode'
|
||||
name_column_g = 'Bezeichnung'
|
||||
party_column_g = 'Fraktion/Gruppe'
|
||||
name_column = 'Member'
|
||||
party_column = 'Party'
|
||||
|
||||
vote_column_to_title = {}
|
||||
|
||||
voting_features = ['ja', 'nein', 'Enthaltung', 'ungültig']
|
||||
for dirname, _, filenames in os.walk('./de/csv'):
|
||||
for filename in filenames:
|
||||
if filename != title_file:
|
||||
|
||||
print(filename)
|
||||
|
||||
vote_counter += 1
|
||||
df = pd.read_csv(os.path.join(dirname, filename))
|
||||
|
||||
# Give each voting behaviour type an identifier from 0 to len(voting_features) - 1
|
||||
for i, feature in enumerate(voting_features):
|
||||
df[feature] *= i
|
||||
vote_column_name = f'vote_{vote_counter}'
|
||||
|
||||
# Map column name of vote to filename -> allows retrieving what the vote was about
|
||||
vote_column_to_title[vote_column_name] = filename
|
||||
|
||||
# add feature for the vote
|
||||
df[vote_column_name] = df[voting_features].sum(axis=1)
|
||||
|
||||
df=df.rename(columns={name_column_g:name_column,party_column_g:party_column})
|
||||
|
||||
period = df.iloc[0][period_column_g]
|
||||
|
||||
if period in data:
|
||||
# merge data with already loaded data
|
||||
data[period] = data[period].merge(df[[name_column, vote_column_name]], on=name_column)
|
||||
else:
|
||||
# if first file that is loaded set data equal to data from first file
|
||||
data[period] = df[[name_column, party_column, vote_column_name]]
|
||||
|
||||
print(data)
|
||||
return data
|
||||
|
||||
|
||||
def load_uk_data(path):
|
||||
"""
|
||||
Load German Parliament data
|
||||
return : Data with columns [Member, Party, vote_0, vote_1 etc]
|
||||
"""
|
||||
#print directory path
|
||||
print(path)
|
||||
# Preprocess data
|
||||
vote_counter = -1
|
||||
data = pd.DataFrame()
|
||||
|
||||
name_column = 'Member'
|
||||
party_column = 'Party'
|
||||
vote_column = 'Vote'
|
||||
|
||||
column_to_filename = {}
|
||||
|
||||
voting_features = {'Aye':0, 'Teller - Ayes':0, 'No':1, 'Teller - Noes':1, 'No Vote Recorded':2}
|
||||
for dirname, _, filenames in os.walk(path):
|
||||
for filename in filenames:
|
||||
vote_counter += 1
|
||||
|
||||
# Read title rows
|
||||
# sep is set to new line so it never splits up the title cells
|
||||
title_df = pd.read_csv(os.path.join(dirname, filename), sep='\n',nrows=(3),skip_blank_lines=True,header=None)
|
||||
|
||||
# Read data rows
|
||||
df = pd.read_csv(os.path.join(dirname, filename),skiprows=(10))
|
||||
|
||||
# Give each voting behaviour type an identifier from 0 to len(voting_features) - 1
|
||||
df[vote_column].replace(voting_features, inplace=True)
|
||||
|
||||
#Replace the vote column name
|
||||
vote_column_name = f'vote_{vote_counter}'
|
||||
df=df.rename(columns={vote_column:vote_column_name})
|
||||
|
||||
# Map column name of vote to title -> allows retrieving what the vote was about
|
||||
column_to_filename[vote_column_name] = title_df.iat[2,0]
|
||||
|
||||
if data.empty:
|
||||
# if first file that is loaded set data equal to data from first file
|
||||
data = df[[name_column, party_column, vote_column_name]]
|
||||
else:
|
||||
# merge data with already loaded data
|
||||
data = data.merge(df[[name_column, vote_column_name]], on=name_column)
|
||||
|
||||
print(data)
|
||||
return data
|
||||
25
uk_analysis.py
Executable file → Normal file
25
uk_analysis.py
Executable file → Normal file
@@ -1,12 +1,15 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
#This code is modified to run in Kaggle
|
||||
|
||||
import voting_lib.load_data as ld
|
||||
import voting_lib.voting_analysis as va
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import os
|
||||
|
||||
|
||||
# Load data
|
||||
data = ld.load_uk_data().to_numpy()
|
||||
X = data[:,2:]
|
||||
|
||||
# Train model
|
||||
grid_h = 30 # Grid height
|
||||
@@ -15,7 +18,17 @@ radius = 3 # Neighbour radius
|
||||
step = 0.5
|
||||
ep = 100 # No of epochs
|
||||
|
||||
model = va.train_model(X, grid_h, grid_w, radius, step, ep)
|
||||
|
||||
# Predict and visualize output
|
||||
va.predict(model, data, grid_h, grid_w)
|
||||
main_directory = 'uk/csv'
|
||||
for dirname, _, filenames in os.walk(main_directory):
|
||||
if dirname == main_directory: #to skip main directory path
|
||||
continue
|
||||
else:
|
||||
# Load data
|
||||
data = ld.load_uk_data(dirname).to_numpy()
|
||||
|
||||
X = data[:,2:]
|
||||
|
||||
model = va.train_model(X, grid_h, grid_w, radius, step, ep)
|
||||
# Predict and visualize output
|
||||
va.predict(model, data, grid_h, grid_w)
|
||||
@@ -1,43 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
#This code is modified to run in Kaggle
|
||||
|
||||
#import voting_lib.load_data as ld
|
||||
#import voting_lib.voting_analysis as va
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import os
|
||||
|
||||
|
||||
|
||||
# Train model
|
||||
grid_h = 30 # Grid height
|
||||
grid_w = 30 # Grid width
|
||||
radius = 3 # Neighbour radius
|
||||
step = 0.5
|
||||
ep = 100 # No of epochs
|
||||
|
||||
#main directory path(should contain differnt dataset directory) can be changed
|
||||
main_directory = '/kaggle/input'
|
||||
|
||||
for dirname, _, filenames in os.walk(main_directory):
|
||||
#print(os.path.join(dirname))
|
||||
if dirname == main_directory: #to skip main directory path
|
||||
continue
|
||||
else:
|
||||
# Load data
|
||||
#data = ld.load_uk_data().to_numpy()
|
||||
|
||||
#modifiy load_data.py --> load_uk_data() to load_uk_data(path)
|
||||
# --> Place path in directory -> for dirname, _, filenames in os.walk(path):
|
||||
data = load_uk_data(dirname).to_numpy()
|
||||
|
||||
X = data[:,2:]
|
||||
|
||||
#model = va.train_model(X, grid_h, grid_w, radius, step, ep)
|
||||
model = train_model(X, grid_h, grid_w, radius, step, ep)
|
||||
|
||||
# Predict and visualize output
|
||||
#va.predict(model, data, grid_h, grid_w)
|
||||
predict(model, data, grid_h, grid_w)
|
||||
@@ -59,11 +59,13 @@ def load_german_data():
|
||||
return data
|
||||
|
||||
|
||||
def load_uk_data():
|
||||
def load_uk_data(path):
|
||||
"""
|
||||
Load German Parliament data
|
||||
return : Data with columns [Member, Party, vote_0, vote_1 etc]
|
||||
"""
|
||||
#print directory path
|
||||
print(path)
|
||||
# Preprocess data
|
||||
vote_counter = -1
|
||||
data = pd.DataFrame()
|
||||
@@ -75,7 +77,7 @@ def load_uk_data():
|
||||
column_to_filename = {}
|
||||
|
||||
voting_features = {'Aye':0, 'Teller - Ayes':0, 'No':1, 'Teller - Noes':1, 'No Vote Recorded':2}
|
||||
for dirname, _, filenames in os.walk('./uk/csv'):
|
||||
for dirname, _, filenames in os.walk(path):
|
||||
for filename in filenames:
|
||||
vote_counter += 1
|
||||
|
||||
|
||||
@@ -9,7 +9,6 @@ def get_compass_parties(year=2017, country='de'):
|
||||
data = [[-3.5, -4], [7, 6.5], [-7, -6.5], [1, 2]]
|
||||
index = ['BÜ90/GR', 'CDU/CSU', 'DIE LINKE.', 'SPD']
|
||||
elif year == 2005:
|
||||
# TODO: add data for 2011
|
||||
data = [[-1.5, -1.5], [9.5, 8], [-6, -2], [3, 3.5]]
|
||||
index = [ 'BÜ90/GR', 'CDU/CSU', 'DIE LINKE.', 'SPD']
|
||||
else:
|
||||
|
||||
Reference in New Issue
Block a user