cleaned up uk code for data loading

This commit is contained in:
2021-05-19 16:00:59 +02:00
parent a2fef60b27
commit 3a15bd1279
5 changed files with 24 additions and 162 deletions

View File

@@ -1,109 +0,0 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os
import pandas as pd
import numpy as np
def load_german_data():
"""
Load German Parliament data
return : Data with columns [Member, Party, vote_0, vote_1 etc]
"""
title_file = "filename_to_titles.csv"
vote_counter = -1
#data = pd.DataFrame()
data = {}
period_column_g = 'Wahlperiode'
name_column_g = 'Bezeichnung'
party_column_g = 'Fraktion/Gruppe'
name_column = 'Member'
party_column = 'Party'
vote_column_to_title = {}
voting_features = ['ja', 'nein', 'Enthaltung', 'ungültig']
for dirname, _, filenames in os.walk('./de/csv'):
for filename in filenames:
if filename != title_file:
print(filename)
vote_counter += 1
df = pd.read_csv(os.path.join(dirname, filename))
# Give each voting behaviour type an identifier from 0 to len(voting_features) - 1
for i, feature in enumerate(voting_features):
df[feature] *= i
vote_column_name = f'vote_{vote_counter}'
# Map column name of vote to filename -> allows retrieving what the vote was about
vote_column_to_title[vote_column_name] = filename
# add feature for the vote
df[vote_column_name] = df[voting_features].sum(axis=1)
df=df.rename(columns={name_column_g:name_column,party_column_g:party_column})
period = df.iloc[0][period_column_g]
if period in data:
# merge data with already loaded data
data[period] = data[period].merge(df[[name_column, vote_column_name]], on=name_column)
else:
# if first file that is loaded set data equal to data from first file
data[period] = df[[name_column, party_column, vote_column_name]]
print(data)
return data
def load_uk_data(path):
"""
Load German Parliament data
return : Data with columns [Member, Party, vote_0, vote_1 etc]
"""
#print directory path
print(path)
# Preprocess data
vote_counter = -1
data = pd.DataFrame()
name_column = 'Member'
party_column = 'Party'
vote_column = 'Vote'
column_to_filename = {}
voting_features = {'Aye':0, 'Teller - Ayes':0, 'No':1, 'Teller - Noes':1, 'No Vote Recorded':2}
for dirname, _, filenames in os.walk(path):
for filename in filenames:
vote_counter += 1
# Read title rows
# sep is set to new line so it never splits up the title cells
title_df = pd.read_csv(os.path.join(dirname, filename), sep='\n',nrows=(3),skip_blank_lines=True,header=None)
# Read data rows
df = pd.read_csv(os.path.join(dirname, filename),skiprows=(10))
# Give each voting behaviour type an identifier from 0 to len(voting_features) - 1
df[vote_column].replace(voting_features, inplace=True)
#Replace the vote column name
vote_column_name = f'vote_{vote_counter}'
df=df.rename(columns={vote_column:vote_column_name})
# Map column name of vote to title -> allows retrieving what the vote was about
column_to_filename[vote_column_name] = title_df.iat[2,0]
if data.empty:
# if first file that is loaded set data equal to data from first file
data = df[[name_column, party_column, vote_column_name]]
else:
# merge data with already loaded data
data = data.merge(df[[name_column, vote_column_name]], on=name_column)
print(data)
return data

21
uk_analysis.py Executable file → Normal file
View File

@@ -1,12 +1,15 @@
#!/usr/bin/env python3 #!/usr/bin/env python3
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
#This code is modified to run in Kaggle
import voting_lib.load_data as ld import voting_lib.load_data as ld
import voting_lib.voting_analysis as va import voting_lib.voting_analysis as va
import numpy as np
import pandas as pd
import os
# Load data
data = ld.load_uk_data().to_numpy()
X = data[:,2:]
# Train model # Train model
grid_h = 30 # Grid height grid_h = 30 # Grid height
@@ -15,7 +18,17 @@ radius = 3 # Neighbour radius
step = 0.5 step = 0.5
ep = 100 # No of epochs ep = 100 # No of epochs
model = va.train_model(X, grid_h, grid_w, radius, step, ep)
main_directory = 'uk/csv'
for dirname, _, filenames in os.walk(main_directory):
if dirname == main_directory: #to skip main directory path
continue
else:
# Load data
data = ld.load_uk_data(dirname).to_numpy()
X = data[:,2:]
model = va.train_model(X, grid_h, grid_w, radius, step, ep)
# Predict and visualize output # Predict and visualize output
va.predict(model, data, grid_h, grid_w) va.predict(model, data, grid_h, grid_w)

View File

@@ -1,43 +0,0 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
#This code is modified to run in Kaggle
#import voting_lib.load_data as ld
#import voting_lib.voting_analysis as va
import numpy as np
import pandas as pd
import os
# Train model
grid_h = 30 # Grid height
grid_w = 30 # Grid width
radius = 3 # Neighbour radius
step = 0.5
ep = 100 # No of epochs
#main directory path(should contain differnt dataset directory) can be changed
main_directory = '/kaggle/input'
for dirname, _, filenames in os.walk(main_directory):
#print(os.path.join(dirname))
if dirname == main_directory: #to skip main directory path
continue
else:
# Load data
#data = ld.load_uk_data().to_numpy()
#modifiy load_data.py --> load_uk_data() to load_uk_data(path)
# --> Place path in directory -> for dirname, _, filenames in os.walk(path):
data = load_uk_data(dirname).to_numpy()
X = data[:,2:]
#model = va.train_model(X, grid_h, grid_w, radius, step, ep)
model = train_model(X, grid_h, grid_w, radius, step, ep)
# Predict and visualize output
#va.predict(model, data, grid_h, grid_w)
predict(model, data, grid_h, grid_w)

View File

@@ -59,11 +59,13 @@ def load_german_data():
return data return data
def load_uk_data(): def load_uk_data(path):
""" """
Load German Parliament data Load German Parliament data
return : Data with columns [Member, Party, vote_0, vote_1 etc] return : Data with columns [Member, Party, vote_0, vote_1 etc]
""" """
#print directory path
print(path)
# Preprocess data # Preprocess data
vote_counter = -1 vote_counter = -1
data = pd.DataFrame() data = pd.DataFrame()
@@ -75,7 +77,7 @@ def load_uk_data():
column_to_filename = {} column_to_filename = {}
voting_features = {'Aye':0, 'Teller - Ayes':0, 'No':1, 'Teller - Noes':1, 'No Vote Recorded':2} voting_features = {'Aye':0, 'Teller - Ayes':0, 'No':1, 'Teller - Noes':1, 'No Vote Recorded':2}
for dirname, _, filenames in os.walk('./uk/csv'): for dirname, _, filenames in os.walk(path):
for filename in filenames: for filename in filenames:
vote_counter += 1 vote_counter += 1

View File

@@ -9,7 +9,6 @@ def get_compass_parties(year=2017, country='de'):
data = [[-3.5, -4], [7, 6.5], [-7, -6.5], [1, 2]] data = [[-3.5, -4], [7, 6.5], [-7, -6.5], [1, 2]]
index = ['BÜ90/GR', 'CDU/CSU', 'DIE LINKE.', 'SPD'] index = ['BÜ90/GR', 'CDU/CSU', 'DIE LINKE.', 'SPD']
elif year == 2005: elif year == 2005:
# TODO: add data for 2011
data = [[-1.5, -1.5], [9.5, 8], [-6, -2], [3, 3.5]] data = [[-1.5, -1.5], [9.5, 8], [-6, -2], [3, 3.5]]
index = [ 'BÜ90/GR', 'CDU/CSU', 'DIE LINKE.', 'SPD'] index = [ 'BÜ90/GR', 'CDU/CSU', 'DIE LINKE.', 'SPD']
else: else: