mirror of
https://github.com/13hannes11/UU_NCML_Project.git
synced 2024-09-03 20:50:59 +02:00
add code to remove NaN rows and columns
This commit is contained in:
@@ -80,7 +80,7 @@ def predict(model, data, grid_h, grid_w, comparison_data=pd.DataFrame()):
|
|||||||
comparison_data_dist = calc_party_distances(comparison_data)
|
comparison_data_dist = calc_party_distances(comparison_data)
|
||||||
plot_party_distances(comparison_data_dist)
|
plot_party_distances(comparison_data_dist)
|
||||||
plt.show()
|
plt.show()
|
||||||
err = normalize_df(part_distance_out) - normalize_df(comparison_data_dist)
|
err = remove_NaN_rows_columns(normalize_df(part_distance_out) - normalize_df(comparison_data_dist))
|
||||||
err = err * err
|
err = err * err
|
||||||
plot_party_distances(err)
|
plot_party_distances(err)
|
||||||
plt.title(f'distance squared error, with mse={np.nanmean(err.to_numpy()):.2f}')
|
plt.title(f'distance squared error, with mse={np.nanmean(err.to_numpy()):.2f}')
|
||||||
@@ -251,3 +251,9 @@ def normalize_df(dataframe):
|
|||||||
df = df - np.min(df.to_numpy())
|
df = df - np.min(df.to_numpy())
|
||||||
df = df / np.max(df.to_numpy())
|
df = df / np.max(df.to_numpy())
|
||||||
return df
|
return df
|
||||||
|
|
||||||
|
def remove_NaN_rows_columns(dataframe):
|
||||||
|
df = dataframe.copy(deep=True)
|
||||||
|
df = df.dropna(axis=0, how='all', thresh=None, subset=None, inplace=False)
|
||||||
|
df = df.dropna(axis=1, how='all', thresh=None, subset=None, inplace=False)
|
||||||
|
return df
|
||||||
|
|||||||
Reference in New Issue
Block a user