add party distance plot

This commit is contained in:
2021-05-10 20:22:12 +02:00
parent d49e29f889
commit 221903d57d

View File

@@ -5,6 +5,8 @@ import numpy as np
from neupy import algorithms
from itertools import product
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sn
def train_model(X, grid_h, grid_w, radius, step, ep):
@@ -36,11 +38,21 @@ def predict(model, data, grid_h, grid_w):
ys, xs = np.unravel_index(np.argmax(prediction, axis=1), (grid_h, grid_w))
# plotting mps
plot_mps(data[:,0], xs, ys, data[:,1])
party_affiliation = data[:,1]
plot_mps(data[:,0], xs, ys, party_affiliation)
plt.show()
# calculating party positions based on mps
party_pos = calc_party_pos(np.column_stack((xs, ys)), party_affiliation)
# plotting parties
plot_parties(xs, ys, data[:,1])
plot_parties(party_pos)
plt.show()
# plotting party distances in outputspace
part_distance_out = calc_party_distances(party_pos)
plot_party_distances(part_distance_out)
plt.show()
# Heatmap of weights
@@ -143,26 +155,45 @@ def plot_mps(names, xs, ys, party_affiliation):
plot_hoverscatter(xs_disp, ys_disp, names + " (" + parties + ")", party_ids)
def plot_parties(xs, ys, party_affiliation):
cmap = plt.cm.RdYlGn
# converting parties to numeric format
def calc_party_pos(members_of_parliament, party_affiliation):
party_index_mapping, party_ids = np.unique(party_affiliation, return_inverse=True)
# calculate average position of party
party_count = np.zeros(party_index_mapping.shape[0])
party_xs = np.zeros(party_index_mapping.shape[0])
party_ys = np.zeros(party_index_mapping.shape[0])
for x, y, party_id in zip(xs, ys, party_ids):
party_xs[party_id] += x
party_ys[party_id] += y
party_count[party_id] += 1
party_xs /= party_count
party_ys /= party_count
party_pos = np.zeros((party_index_mapping.shape[0], members_of_parliament.shape[1]))
party_count = np.zeros((party_index_mapping.shape[0], members_of_parliament.shape[1]))
party_pos
for i, mp in enumerate(members_of_parliament):
party_index = party_ids[i]
party_pos[party_index] += mp
party_count[party_index] += 1
party_pos /= party_count
return pd.DataFrame(data=party_pos, index=party_index_mapping)
def plot_parties(parties):
cmap = plt.cm.RdYlGn
party_index_mapping = parties.index
plt.figure()
party_colors=np.array(range(len(party_index_mapping)))
plt.scatter(party_xs, party_ys, c=party_colors, cmap=cmap)
plt.scatter(parties[0].to_numpy() , parties[1].to_numpy(), c=party_colors, cmap=cmap)
# plotting labels
offset = 0.01
for x,y, party in zip(party_xs, party_ys, party_index_mapping):
for x,y, party in zip(parties[0], parties[1], party_index_mapping):
plt.text(x + offset, y + offset, party)
def calc_party_distances(parties):
distances = np.zeros((parties.shape[0], parties.shape[0]))
for i, (_, left_party) in enumerate(parties.iterrows()):
for j, (_, top_party) in enumerate(parties.iterrows()):
distances[i,j] = np.linalg.norm(left_party.to_numpy() - top_party.to_numpy())
party_index_mapping = parties.index
return pd.DataFrame(data=distances, index=party_index_mapping, columns=party_index_mapping)
def plot_party_distances(distances):
fig = plt.figure()
ax = plt.gca()
ax.tick_params(axis="x", bottom=False, top=True, labelbottom=False, labeltop=True)
sn.heatmap(distances, cmap='Oranges', annot=True)